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Introduction to Linear Regression 

Linear regression is a common technique used to predict a dependent variable (y) using 

one or more independent variables. In its simplest form simple linear regression, the method 

examines the relationship between two variables. For instance, if you want to understand how the 

age of a house affects its price, you would analyze data where the price is the dependent variable 

and the house’s age is the independent variable. In many real-world situations, a single variable 

cannot fully explain an outcome. A house’s price, for example, is influenced not only by its age 

but also by factors such as living area, lot size, and other features. Multivariable linear regression 

addresses this complexity by incorporating multiple predictors into the model. Here is the 

general equation[1]: 

Y= β0+ β1X1+ β2X2+ β3X3+…+ε   

Here, X₁, X₂, X₃, etc. represent the independent variables (like Living Area, Lot Size, Age), β₁, 

β₂, β₃, etc. are the coefficients that quantify the impact of each variable on the dependent variable 

(Price), and ε captures the variation not explained by the model. 

Data and Context 

This technique is ideal for quantitative data where the dependent variable is continuous, 

such as housing prices. The independent variables can be continuous, categorical (with proper 

encoding), or a mix of both. Multivariable linear regression is particularly useful when you want 

to: 1. Understand how several factors simultaneously influence an outcome, 2. Control for 

confounding variables, and 3. Make predictions as well as draw inferences about relationships 

between variables. Schneider explains that researchers can determine an appropriate sample size 

by considering their expected values for the coefficient of determination (r²) and the regression 
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coefficient (b). Typically, the study should include at least twenty times as many observations as 

there are independent variables, in other words, if you are examining two predictors, you should 

aim for a minimum of 40 observations [2]. For the model to be reliable, the relationship between 

the dependent and independent variables should be approximately linear, and you should have 

enough observations relative to the number of predictors, typically at least 20 observations per 

predictor. 

How Multivariable Linear Regression Works with Linear Algebra 

The primary method used to estimate the coefficients β0, β1,… in a multivariable linear 

regression model is Ordinary Least Squares (OLS). OLS aims to minimize the sum of the 

squared differences between the observed values and the values predicted by the model. In a 

multivariable context, this process involves more complex math, as the model is working in a 

multi-dimensional space. 

To explain how linear algebra fits into this, we first organize the data into a matrix form. 

In this case, we have our predictors (Living Area, Lot Size, and Age) represented as vectors in a 

matrix X, and the dependent variable (Price) as a vector y. Our predictors have the coefficient 𝛃  

which we aim to solve using linear algebra. We can achieve this using the normal equation [3] 

where 𝐴𝑇𝐴𝑋 = 𝐴𝑇𝑏 

David Austin in proposition 3.1.4 states that if you have an invertible matrix, then multiplying 

both sides of the equation by its inverse will isolate the unknown vector. Such that if  

𝐴𝑥 = 𝑏 then 𝐴−1𝑏 = 𝑥. [4] Using linear algebra, we can solve for β using the formula: 

𝛃 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏  
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Here’s how the linear algebra works: 

𝐴𝑇 is the transpose of matrix A, swapping the rows and columns. 𝐴𝑇𝐴 is the normal 

equation that combines the predictors to form a square matrix. The inverse of 𝐴𝑇𝐴, denoted 

(𝐴𝑇𝐴)−1, is computed to "undo" the multiplication and ensure the solution is valid. Finally, 

multiplying the inverse by 𝐴𝑇and b gives the estimated coefficients β. 

These coefficients represent the "best-fit" line in a multi-dimensional space, where the 

line minimizes the error between the predicted and actual house prices. However, if the 

predictors in the matrix A are highly correlated (some features are similar to each other), the 

matrix 𝐴𝑇𝐴 can become unstable. This is explained further in Draper and Smith, if a matrix has 

high correlation between columns, the matrix is close to singular and its inverse may not exist or 

might give unreliable estimates[5]. The least squares method will not produce unique solutions 

but multiple possible estimates. Meaning the data could be insufficient for the model, or when 

the model is too complex relative to the available data. To resolve this, more data is needed, or 

the model should be simplified to better fit the available data.  

By using linear algebra to solve the OLS problem, we gain a clear understanding of how 

each predictor (Living Area, Lot Size, and Age) influences the house price. However, the quality 

of the model depends heavily on the quality and stability of the data used. For example: 

     

Houses Living Area(sq.ft) Lot Size(acres) Age(years) Price(USD) 

8 1464 0.11 87 108794 

9 1216 0.61 101 68353 

10 1632 0.23 14 123266 
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11 2270 4.05 9 309808 

12 1804 0.43 0 157946 

13 1600 0.36 16 80248 

14 1460 0.18 17 135708 

15 1548 0.36 0 173723 

(At a glance, one might infer that larger living areas and lot sizes generally lead to higher prices, 

while older houses might be priced lower. However, with just eight observations, any 

conclusions must be drawn with caution. 

Solution 

To solve the solution to the regression model we take the data and try to solve the normal 

equations 𝐴𝑇𝐴𝑋 = 𝐴𝑇𝑏. Given our data set we can construct a matrix and vector as such: 

In this matrix, we applied the intercept b0 to the first 

column of the matrix to form our equation: 

  Y(vector) =  matrix[β0 + β1X1(Living Area(sq.ft))+β2

X2(Lot Size(acres))+β3X3(Age(years))] 

 

As we  isolate the x variable. Remembering the inverse property 

such that if  𝐴𝑥 = 𝑏, then 𝐴−1𝑏 = 𝑥. We use this property to solve 

for x as (𝐴𝑇𝐴)−1 ∗ 𝐴𝑇𝑏 = 𝑥. 
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Thus Price = 40929.52 + 55.51(Living Area) + 35608.32(Lot Size) − 476.79(Age) 

Now for calculating 𝑹𝟐 

 

 



7 

The  Results 

The regression output for the housing dataset shows that about 89% of the variation in 

house prices can be explained by the model. Essentially, multivariable linear regression tries to 

find the "best-fit" line that represents the relationship between factors like living area, lot size, 

and the age of a house with its price. It does this by using math to minimize the difference 

between the actual prices and the prices predicted by the model. 

In our case, we computed 𝑹𝟐, which is a measure of how well the model's predictions 

match the actual data. An 𝑹𝟐 of 0.89 means the model does a good job of explaining house prices 

based on the features we provided. 

However, this process involves some complex math, and if the data used to build the 

model isn’t great, like if the variables are too similar or there’s not enough data, the math can 

become unstable.  

Uses cases in other scenarios 

A similar approach can be applied to predict stock prices. In one example[6], scholars wrote an 

article on a multivariable linear regression model that forecasts a stock’s daily high price based 

on two factors: the stock’s opening price and the NASDAQ’s opening price. Here, the stock's 

opening price is the price at which the stock first trades when the market opens, reflecting the 

initial investor sentiment and overnight news, while the daily high price is the maximum price 

the stock reaches during trading hours, capturing its intraday volatility. Predicting the daily high 

price is significant because it offers insights into potential profit opportunities, helps investors 

determine optimal entry and exit points, and supports better risk management during trading. To 

build a reliable model, historical stock data is extracted using the Yahoo Finance library, which 
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provides current and comprehensive market information. This data is then divided into a training 

period of one year and a testing period of one month to ensure that the model is well-calibrated 

and can generalize effectively. The model for Apple’s stock is: 

Apple's predicted high price = -0.2514 + 0.9965(Apple open) + 0.0230(NASDAQ open) + ε 

Despite achieving a high r² of 0.91 and a low root mean square error of 1.14, the model’s 

simplicity is a key limitation. It uses only two predictors, the stock's daily opening price and the 

NASDAQ's opening price, which capture only basic market conditions. As Schneider points out, 

when a model relies on just two independent variables, it should ideally be supported by at least 

40 observations to yield reliable estimates; any shortfall in sample size can further undermine the 

model’s robustness. In reality, many other factors such as investor sentiment, economic 

indicators, trading volumes, technical patterns, and unexpected events like economic shifts or 

geopolitical tensions can significantly influence stock prices. Moreover, if the training data 

comes from a period of unusual calm or volatility, the model might not perform well when 

applied to different time periods. This narrow focus means the model might be underfit by 

missing key dynamics, or even overfit if the specific time frame isn’t representative of broader 

market conditions.  

Both the housing and stock models demonstrate that a strong statistical fit on paper does not 

always translate into reliable predictions in practice. The housing model, based on only eight 

observations and three predictors, faces issues like large standard errors and potential 

multicollinearity. Similarly, the stock model’s reliance on just two predictors overlooks important 

influences on stock prices. In both cases, it’s crucial to balance model simplicity with sufficient 

data and relevant predictors to capture the true complexity of the underlying phenomena. 
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Conclusion 

Multivariable linear regression is a powerful tool that leverages linear algebra to combine 

multiple predictors for explaining and forecasting outcomes. Whether predicting house prices or 

stock market trends. This paper has shown how starting with a simple linear relationship can 

evolve into a more robust multivariable approach that accounts for several influencing factors. 

We explored how the method works by minimizing the errors between observed and predicted 

values using Ordinary Least Squares, and how linear algebra helps solve for the best-fitting 

coefficients. 

Throughout the discussion, examples like the housing dataset and stock price prediction 

underscored important lessons. With the housing data, we saw that even a strong overall fit can 

be misleading when based on limited observations and a small number of predictors. The stock 

example further highlighted that while a model may show promising statistics on paper, relying 

on only a couple of variables might overlook the many unpredictable factors driving market 

behavior. These cases remind us that both overfitting and underfitting are real concerns; a model 

must balance simplicity with the inclusion of enough relevant data to truly capture real-world 

complexity. 

In essence, a solid multivariable linear regression model requires more than just a good 

statistical fit. It depends on sufficient data, thoughtful selection of predictors, and careful 

interpretation of results. When these elements are in harmony, the model not only provides 

statistical insights but also offers meaningful, real-world predictions. 
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